
Advanced Pacting

Beth Skurrie / Yousaf Nabi
@bethesque / @you54f



Topics

● Writing consumer tests
● Verifying Pacts
● Using branches and environments
● CI/CD
● Organisational Scale
● Questions



Writing consumer tests



Writing good consumer tests

● The key is knowing what *not* to test.
● Restraint!
● It is easy to write Pact tests that are

○ Brittle
○ Overly strict
○ Burdensome



Writing good Pact tests 
is the difference between a 
useful Pact implementation 

and one which makes everyone wish 
they’d stuck with integration tests.



What does a good Pact test look like?

● There should be sufficient assertions to ensure that the response 
from the provider will not break the consumer while also keeping:
○ The scope of the consumer code under test as small as it can be.
○ The expectations on the response as loose as they can be.
○ The focus on the messages (request/response), not the 

implementation.



Scope, scope, scope



Why not include the UI/business logic layers?

● Maintainability
○ Using Pact to test UI concerns causes interactions with minor 

variations to be added to the contact that don’t meaningfully increase 
test coverage, but do increase the maintenance of the provider 
verifications.



Provider API Client Responsibilities

● Converts back and forth between the business domain classes 
and concepts of the consumer and the HTTP requests and 
responses required to communicate with the provider

● Abstracts the HTTP-ishness of the provider
● Eg. 200 returns an object, 404 returns null, 401 raises a validation 

error



Options for “top to bottom” consumer tests

● Use the pact generated by the unit tests along with a pact stub 
server.

● Use a separate HTTP mock library and use shared fixtures 
between both the pact tests and the “top to bottom” tests.

● Use a separate HTTP mock library and parse the generated pact 
to initialise the mock.



Pact Matchers - the main ones (v2)

● Type based matching
● Regular expressions



Type based matching - objects

like(“foo”) - match any string
like(1)       - match any number
like(true)  - match any boolean

like({
  “name”: “foo”, 
  “address”: {
    “street”: “Flinders St”
    }
  })



Type based matching - arrays

eachLike(“foo”) - an array of strings
eachLike(1) - an array of numbers
eachLike(true) - an array of booleans

eachLike({
  “name”: “foo”, 
  “address”: {
    “street”: “Flinders St”
    }
  })



Type based matching - arrays

eachLike({
  “name”: “foo”, 
  “address”: {
    “street”: “Flinders St”
    }
  }, { “min”: “2} )



Things to remember

● Responses can have extra keys without failing the verification, but 
requests cannot - Postel’s Law.

● You can be as strict as you like on requests - they’re your own 
tests.

● V3 matchers https://github.com/pact-foundation/pact-specification/tree/version-3

● Pact doesn’t support optional fields - [] or [{foo: “bar”}]
● Verifications may validate against only [] and pass, but fail in 

production

https://github.com/pact-foundation/pact-specification/tree/version-3


?
Questions



Functional vs contract tests

● Contract tests focus only on the messages (request and response)
○ When I send

■ POST /widgets
■ Request body containing widget properties

○ I receive
■ 200 OK
■ Location header with URL of new widget
■ Response body containing widget properties

● Functional tests also check for side effects
○ All of the above checks
○ Plus: is the widget stored correctly in the repository?



● Could you “hardcode” a provider implementation that passes the 
contract tests, but actually doesn’t persist any data?

POP QUIZ



POP QUIZ

● Could you “hardcode” a provider implementation that passes the 
contract tests, but actually doesn’t persist any data?

YES!!!!

● What stops us doing this?

The functional tests in the provider’s own codebase



Contract tests aren’t designed to operate 
alone



It’s not the job of the consumer to be a test harness for the 
provider

It’s not the job of the consumer to be a 
test harness for the provider



Is there duplication between functional and 
contract tests?
● Yes, but not entirely
● A contract test only covers the attributes of the request and 

response that a particular consumer cares about
● By design it excludes things that the consumer does not care 

about
● Functional test covers all the functionality available to all the 

consumers



Bad example - functional test

When "creating a user with a username with 21 characters"
    POST /users { "username": "thisisalooongusername" }
Then
    Expected Response is 400 Bad Request

Expected Response body is { "error": "username cannot be more than 20 
characters" }

■ Focusses on the implementation
■ Brittle
■ Tempts you to try and write a test for every scenario



Good example - contract test

When "creating a user with invalid data"
    POST /users { "username": "thisisalooongusername" }
Then
    Expected Response is 400 Bad Request

Expected Response body is { "error": Pact.like(“some error message”) }

■ Focuses on the shape of the document
■ Flexible
■ Maintainable



Don’t add an assertion for a business rule just 
because you know it to be true
● “All plans IDs for Victoria should start with 8”
● “The customer ID should be 12 characters long”



A good contract test aims to expose:

■ bugs in the consumer code
■ misunderstanding from the consumer about end-points or payload
■ breaking changes by the provider on end-points or payload



● You should be able to construct a proper sentence using the 
description and the provider state(s).
○ Given an alligator named Mary exists upon receiving a request to 

retrieve an alligator by name the provider will respond with …
● Think of the readers of the generated documentation and try to 

use BDD style notation to describe the business actions rather 
than describing the HTTP mechanisms where possible.
○ “a request to activate a user” rather than “a request to set active to 

true”

Other tips



Other tips

● Only use deterministic data - more on this later
● Reuse provider states where it makes sense, to ease the 

maintenance burden on the provider team.
● Make your response expectations as loose as possible 

○ eg. {“bar”: Pact.like(“foo”) } rather than {“bar”: 
“foo”} 



Writing consumer tests - 
Question time



Verifying pacts



Verifying pacts

● Where to stub
● Handling authentication and authorization



Scope of a provider verification test



Stubbing
● Should be able to run on your local development machine
● Always stub external services
● Stub whichever layer(s) of your provider makes sense for you 

○ Balance
■ Speed of feedback vs accuracy of feedback
■ Maintainability of tests

○ Microservice with SQLite database? Might not need to stub anything
○ Heavyweight proprietary database? Maybe stub DAO.

● Beware of stubbing business logic though
○ business logic can affect the response given, and hence, make the 

verification results unreliable



Be aware!!!



When you stub

● Be aware of the tradeoffs
○ Stubbing improves reliability, but reduces confidence

● Make sure you have a matching “contract” test with the thing 
you’re stubbing to make sure you’re stubbing it right.



Handling authentication and authorisation

■ Should authentication and authorization be part of the contract?
■ No straight answer, it’s about the tradeoffs
■ Yes

● Increase in certainty
● Less to cover in any integrated tests
● Good if the auth code is custom and likely to change

■ No
● Simpler
● If using stable standards, there may be little benefit
● May be more easily covered in e2e tests



Options

■ Ignore auth (test using other types of tests)
■ Stub your auth services (client code or implementation)
■ Use provider states to create real users with matching credentials
■ Modify the request before sending it using live credentials (using 

Pact framework)
● Make sure the credentials you’re replacing “match”, otherwise, 

there’s no point in including them in the contract
■ Use your own custom middleware or proxy to modify the response 

with live credentials
■ Use a 100 year token!



Required

Communicate 
and 

collaborate 



Verifying Pacts - Question time



Pactflow/Pact Broker











Using branches / deployments



Pact Broker BDM - Pact publication

Branch



Pact Broker BDM - with verification results

Branch Branch



Pact Broker Class diagram

Branch



WHAT WE ARE KNOWN FOR

49

Using Tags

● Branches in the Pact Broker are designed to model repository (git, svn 
etc) branches

● Belong to pacticipant (application) version resources in the Pact 
Broker

● Tell us metadata about the pacticipant version
○ Git branch eg. “master”, “feat/xyz”

● A pacticipant version in the Pact Broker should map 1:1 to a commit in 
your repository. To facilitate this, the version number used to publish 
pacts and verification results should either be or contain the commit.

What are branches?

https://docs.pact.io/getting_started/versioning_in_the_pact_broker#guidelines


WHAT WE ARE KNOWN FOR

50

Using Tags

● For can-i-deploy to work correctly, every team and the Pact Broker 
must have the same shared understanding of what an 
"environment" is

● The Pact Broker needs to know which versions of each application 
are in each environment so it can return the correct pacts for 
verification and determine whether a particular application version 
is safe to deploy.

● The environments should mirror your organisations environments in 
which you will target for deployments

● You can set these up in the Pact Broker/Pactflow

What are environments?

https://docs.pact.io/pact_broker/can_i_deploy


WHAT WE ARE KNOWN FOR

51

Using Tags

When are branches created?

● During pact publication - this tells us which branch the pacticipant 
version (and hence, the pact) was published from

● During verification results publication - this tells us which branch 
the pacticipant version(and hence, the verification results) were 
published from



WHAT WE ARE KNOWN FOR

52

Using Tags

When are deployments recorded?

● After deployment - this tells us which environment the application version 
is deployed to
● record-deployment automatically marks the previously deployed 

version as undeployed, and is used for APIs and consumer 
applications that are deployed to known instances.

● record-release does NOT change the status of any previously 
released version, and is used for mobile applications and libraries 
that are made publicly available via an application store or repository.



WHAT WE ARE KNOWN FOR

53

Using Tags

Environments and Branches over time

Deployed to test & prod envs. 
On main branch

Not deployed. 
On feature branch

Deployed to test. 
On main branch

Undeploys version 0cdaa54 
if used with record-deployment



What are branches used for?

● Branches are used to identify which pacts a provider should verify 
using consumer version selectors.

● Typically, the provider should be configured to verify the pacts 
belonging to the main branch of each consumer (amongst others - 
read more here). 

● Branches are also used to calculate the pending status of a pact 
and identify work in progress pacts.

https://docs.pact.io/pact_broker/advanced_topics/consumer_version_selectors
https://docs.pact.io/provider/recommended_configuration#verification-triggered-by-provider-change
https://docs.pact.io/pact_broker/advanced_topics/pending_pacts
https://docs.pact.io/pact_broker/advanced_topics/wip_pacts


What does this allow us to do?

1. Ensure we are verifying the right pacts
2. Ensure backwards compatibility
3. Provides a mechanism for introducing changes to pacts
4. Easily ensure safe deployments



1. Ensure the right pacts are verified
● The example used for default provider verification configurations 

usually specifies to verify the “overall latest pact”
● What if the latest pact came from a feature branch?
● Set the branch name when you publish pacts
● Configure the provider version selectors to verify the main branch 

of the consumer 
● {mainBranch: true}
● Set the Pacticipant main branch property to "master” (or 

whatever the name of your main line of development is)



2. Ensure backwards compatibility

● Verifying “latest master” ensures our provider is compatible with the 
current consumer code.

● Microservices -> decouple release cycles of consumer and provider
● Need to ensure provider is compatible with production consumer as 

well as latest
● Record-deployment / record-release with the stage name when you 

deploy application
● Configure the provider to verify the latest deployed or released 

pacts as well as the latest main branch.
● {mainBranch: true}, { deployedOrReleased: true }



3. Introduce changes without breaking builds

● If following “consumer driven” pacts, pact is changed before 
provider

● This would break provider build
● Do changes on branch of consumer, and publish with branch 

name OR do changes with feature toggle and publish with toggle 
name

● Collaborate with provider team!
● Once feature pact is successfully verified, merge to main branch/

turn toggle on



4. Easily ensure safe deployments

● Each pact publication is associated with a consumer version
● Each pact verification is associated with a provider version
● The pact publication is linked to the verification results through the 

pact (content) version
● There is a many to many relationship between consumer version 

and provider version thought pact publication/pact version/
verification results



Quick tangent! Pre-verification

● If pact with same content published multiple times with different 
consumer versions:
○ New pact publication resource each time
○ Reuses existing pact version
○ Inherits existing verification results

● This is how pacts are “pre-verified”
● This is why it’s best to use deterministic data



The Matrix

Consumer (Foo)  
version

Provider (Bar)
version

Verification 
result

11  54  prod. success

12 54 failure

12 55 success



The can-i-deploy CLI

● Queries the matrix to determine if a set of pacticipant versions can 
be safely deployed together

○ ie. is there a pact with a successful verification result 
between the specified consumer and provider versions



can-i-deploy

63

Consumer (Foo)  
version

Provider (Bar)
version

Verification 
result

11  54  prod. success

12 54 failure

12 55 success

$ pact-broker can-i-deploy 

--pacticipant Foo --version 11

--pacticipant Bar --version 54



can-i-deploy - best

64

Consumer (Foo)  
version

Provider (Bar)
version

Verification 
result

11  54  prod. success

12 54 failure

12 55 success

$ pact-broker can-i-deploy 

--pacticipant Foo --version 11


—to-environment prod



Tagging with feature toggles

● The current Pact Broker workflow best suits branch based 
development

● Expects one pact per consumer version, but feature toggles mean 
there might be multiple variations of the pact for the same git sha.

● Conceptually though, these can be thought of as different versions



Potential feature toggle hack

● Consumer
○ Create pact with toggles off

■ Consumer version - sha eg. effe8a07

■ Tag with ‘base’

○ Create pact with toggle A on
■ Consumer version sha+toggle_name eg. effe8a07+feat_a

■ Tag with toggle name

● Provider
○ Verify pacts with toggles off

■ Provider version - sha eg. d3092627

■ Tag with ‘base’

○ Verify pacts with toggle B on
■ Provider version - sha+toggle_name eg. d3092627+feat_b 



CI/CD



The CI/CD/Pact Broker touchpoints

1. Pact changed (CI)
2. Provider changed (CI)
3. Release workflow (CD)



Build pipeline without Pact



Build pipeline with Pact

Record 
deployment

Record 
deployment



Build pipeline with Pact - Consumer

Record 
deployment

Record 
deployment



Build pipeline with Pact - Provider

Record 
deployment

Record 
deployment



For extra brownie points

● Git statuses
● Slack updates



CI/CD - Question Time



Pending pacts - the problem

● Changes to the pact can break the provider’s build



Pending pacts - the solution

● If the pact content has not yet been successfully verified:
○ It is considered “pending”
○ If verification fails, it will not fail the build

● Once it has been successfully verified:
○ It is no longer “pending”
○ Any failure can only be due to a change in the provider
○ If verification fails, it will fail the build



Pending pacts - something to note

● The pending status is calculated based on the branch that will be 
applied to the provider version when the results are published



WIP Pacts - the problem

1. Changed pact published with branch ‘feat/foo’
2. ‘contract_requiring_verification_published’ webhook triggers 

verification - failure
3. Provider implements required changes
4. Provider runs verification for main consumer branch ‘master’ and all 

deployed and released versions

Unless provider team changes the consumer selectors to add the 
feature branch to verify in the configuration, the ‘feat/foo’ pact won’t 
get a successful verification result.



WIP Pacts - the solution

● Changed pact published with branch ‘feat/foo’
● ‘contract_requiring_verification_published’ webhook triggers 

verification - failure
● Provider implements required changes
● Provider runs verification for main consumer branch ‘master’ and all 

deployed and released versions - it also automatically verifies any 
“work in progress” pacts.

A “work in progress” pact is one which is the latest for its branch, and 
has not yet been successfully verified.



Organisational Scale



3 key steps to ensure and scale enterprise 
wide adoption
● Stakeholder buy-in: Using Pact requires collaboration and commitment from 

each consumer and provider team. Getting buy-in from key stakeholders and 
aligning on clear goals, objectives and how we will measure success.

● Run a PoC: In our experience, it’s best to start small with an initial MVP and a 
reduced working group on which to establish the appropriate working context, 
validate concepts and hypotheses. With these learnings it will be easier to scale 
and expand across the organisation.

● GoP: Once a PoC has demonstrated value in moving forward, the challenge 
becomes scaling contract testing throughout the organisation. There is value in 
creating an internal group of practice to accelerate adoption, training, eduction 
and scaling.



Group of Practice (GoP)

● Metrics: Establish metrics and KPI’s to track the speed of adoption across the organisation
● Processes: Develop a standard methodology for team adoption with step-by-step instructions 

including
● Workflow of all contract testing related tasks within every spring
● Recommended development model that follows the release cycle using a branching model
● Adaptation of the SDLC to include contract testing
● Definition of the onboarding and monitoring processes for all relevant teams.

● Communication: Facilitate real-time collaboration by enabling the rapid collection of data and ideas
● Organise regular “open sessions” to address/resolve any questions or issues
● Regular meetings to track progress with stakeholders (including Dev, QA, SRE, PO)
● Create an open commenting/annotation system to loop in others and improve coverage

● Tracking: Reporting of KPI progress to all key stakeholders
● Support and follow up for all teams
● Feedback to revise and refine all processes and practice



How to onboard teams?

● Buy in: Establish the current problems and how the new model will help 
solve those challenges

● Training: Step by step training and workshop, based on company domain
● Alignment: Define the main objects and agree on metrics to measure 

adoption
● Commitment: Reserve time to commit to adoption of new practice
● Adoption: Set a group of Contract testing champions to help build spikes

● Champions pair programming
● Continuous support via champions and GoP

● Progress tracking: Follow up and KPI’s monitoring
● Refinement: Open talks and retros with teams to gather feedback



Quantitative Metrics

● Engagement
● No of pipelines with can-i-deploy tool enabled
● No of teams/projects with contracts in Pactflow
● No of endpoints covered by contracts (contract testing coverage)

● Impact
● Time spent on manual testing (we want to see a reduction)
● Deployment frequency - how often do you release?
● Lead time for change - how long does it take to get a release from commit to 

production
● Change failure rates - how frequently does a change result in a failure as a 

percentage
● Mean time to recovery (MTTR) - how long does it take to recover from a failure 



Qualitative Metrics

● How is the team feeling with the new tools?
● What are the plans and gains?
● How active is the tool?
● How active and supportive is the community?



Example results from a customer after 7 
sprints
● Governance

● 2 teams training in CT techniques, 4 CT champions
● 8 KPI’s defined
● GoP setup to engage teams and continue CT using Pact gaining adoption
● Implementation of RBAC in Pactflow

● Technical Aspects
● 6 endpoints covered with CT
● 2 Jenkins pipelines integrated with Pactflow
● 2 bugs detected which were present in production environments

● Times
● 8 hours to develop first CT test
● 3 weeks to integrate first pipeline
● 4 weeks from the project start date to discover first bug



Learnings: Contract testing champions as a 
key role
● Main role to accelerate the process

● Evangelises the rest of the teams
● Supports the practice also over the organisation
● Ownership of the practice
● Autonomy and trust of the organisation to make decisions



Learnings: A Group of Practice is a must to 
expand adoption
● Group of Practice should always be established to guide, support & continuously 

track the degree of adoption of the new practice within an organisation.  
Key responsibilities include
● Evangelise about the use and benefits of contract testing
● Train teams in the technique
● Establish metrics for monitoring and checking the degree of success
● Collect feedback from the teams
● Resolve dependencies and impediments
● Provider teams with adequate resources to implement contract testing efficiently 
● Prepare status reports
● Organise meetings, seminars, workshops, lectures on contract testing within the 

organisation



Learnings: Monitoring metrics are key to track 
success
● For any process of implementation of new practices in an 

organisation, it is important to establish monitoring metrics that 
allow us to know the degree of evolution of the same.  
This data will give us information on:
● Degree of implementation in teams
● Effectiveness of contract testing within the organisation
● Alignment with business objectives
● Fulfilment of expectations
● Detection of deviations or inefficiencies 



Thank you - Question Time


